DFS Webinar Series-

Physical Climate Risks in New York: Part 1

Mark Lowery
Assistant Director
Office of Climate Change
New York State Department of Environmental Conservation
Carbon dioxide over 800,000 years
2020: Warmest (or 2nd warmest) on record

- 2020 and 2016 in a statistical tie
 - 2016 El Niño
 - 2020 La Niña
- 2020 1.2-1.3°C warmer than late 19th century
Significant Risk in Continuing GHG Emissions

- Economic damage attributable to climate change in the US will be in the 100s of billions of dollars per year by 2090 under a high emissions scenario – close to our current emissions track (NCA4).
- Even 1.5°C will carry significant risks, and risks are substantially higher at 2°C warming. Allowing warming of 1.5°C could trigger feedback loops with the potential to cause runaway warming. (IPCC)
- Current national commitments would lead to a 2.1-3.3°C rise. (Climate Action Tracker)
- On current track we will emit enough greenhouse gases by 2030 to make holding warming to 1.5°C impossible. (IPCC)
Effects in New York

- Higher temperatures
- More precipitation
- More frequent drought
- Sea-level rise
- More extreme events:
 - Floods
 - Heat
 - Ice/snow
 - Winds
 - Coastal storms
- Disease and pests

- Risks to people
- Stressed infrastructure
- Agricultural and ecosystem effects
Integrated Climate Assessments

- **ClimAID**
 - Published in 2011, updated in 2014
 - 24 global climate models
 - 2 Representative Concentration Pathways: 4.5, 8.5
 - 2020s, 2050s, 2080s, 2100
- **Quantitative Projections**
 - Temperature (mean and extreme events)
 - Precipitation (mean and extreme events)
 - Sea-level rise
- **Qualitative Projections**
 - Heat indices (heat and humidity)
 - Snow and ice storms
 - Lightning
 - Storms and tornadoes

- **Sectors**
 - Agriculture
 - Public Health
 - Coastal Zones
 - Telecommunications
 - Ecosystems
 - Transportation
 - Energy
 - Water Resources

Climate Assessment Update
- Economic impacts
- Projections updates
- Sector-based impacts and adaptation

www.nyserda.ny.gov/climaid
NY Climate Change Science Clearinghouse

Clearinghouse: Maps, data and documents to support decision making

https://www.nyclimatescience.org/
Climate Data Grapher

Monthly, seasonal, and annual records:

- Daily maximum temperature (F)
- Daily minimum temperature (F)
- Daily average temperature (F)
- Growing degree day accumulation, base 50 F
- Heating degree day accumulation, base 65 F
- Cooling degree day accumulation, base 65 F
- Counts of days with maximum temperature above 90 F
- Counts of days with maximum temperature above 95 F
- Counts of days with maximum temperature above 100 F
- Counts of days with minimum temperature below 0 F
- Counts of days with minimum temperature below 32 F
- Total precipitation (inches)
- Total snowfall (inches; station data only)
- Maximum daily snow depth (inches; station data only)
- Counts of days with precipitation greater than 1 inch
- Counts of days with precipitation greater than 2 inches
- Counts of days with precipitation greater than 4 inches
- Counts of days with snow depth greater than 1 inch (station data only)
- Growing season length (station data only)

https://nyclimatescience.org/highlights/data_products

Observed and CMIP5 projected climate data at county and river-basin levels
Northeast Regional Climate Center

Home
- Weather Station Data
- State & Regional Analyses
- Analyses for Industry
- Climate Resources
- Webinars & Workshops
- Publications & Services

Quick Links
- Webinar
- Blog

We appreciate any feedback:
https://www.nrcc.cornell.edu/

Recent and historical weather data customized to meet your needs

March 2016 Temperature Averages (°F)

State	Average	Departure	Rank	Coldest	Warmest
Connecticut | 42.9 | 6.1 | 117 | 26.3 in 1916 | 45.8 in 2012
Delaware | 49.2 | 5.2 | 118 | 32.2 in 1900 | 53.7 in 1921
Maine | 29.0 | 2.1 | 97 | 17.0 in 1923 | 34.6 in 2010
Maryland | 49.2 | 5.8 | 118 | 31.6 in 1900 | 53.0 in 1921
Massachusetts | 41.0 | 5.7 | 116 | 25.7 in 1916 | 44.1 in 2012
New Hampshire | 34.9 | 5.0 | 112 | 20.7 in 1900 | 38.9 in 1921
New Jersey | 46.8 | 6.0 | 119 | 20.4 in 1916 | 49.8 in 2012
New York | 37.6 | 5.9 | 113 | 21.3 in 1900 | 43.3 in 2010
Pennsylvania | 43.2 | 6.4 | 117 | 24.5 in 1900 | 47.7 in 2012
Rhode Island | 42.9 | 5.4 | 118 | 27.8 in 1916 | 45.5 in 2012
Vermont | 35.3 | 4.9 | 111 | 18.6 in 1904 | 36.7 in 1921
West Virginia | 48.4 | 6.5 | 116 | 27.6 in 1900 | 52.6 in 2012
Northeast | 39.8 | 5.6 | 114 | 24.6 in 1900 | 44.5 in 2012

Rankings are for the 122 years between 1895 and 2016. + indicates extreme also occurred in one or more previous years.
New York State Hazard Mitigation Plan

https://mitigateny.availabs.org/
Increased Mean Annual Temperature (very likely)

NYS since 1970

• Annual mean +1.3°C (2.3°F)
• Winter mean +2.4°C (4.3°F)
• Less snow cover

Projections (Capital Region)

• Warmer!
 - up to 3.9°C by 2050s
 - up to 6.3°C by 2080s
 - up to 7.6°C (13.6°F) by 2100
Vulnerabilities to Increasing Temperature

- Increased strain on A/C capacity
- Increased demand on water supplies
- Increased algal growth in water bodies
- Insects see more generations per season
- Increased weed, disease, and insect pressure

- Reduced water cooling capacity
- Sagging power lines
- Wear on transformers
- Increased energy demand
- Increased strain on runway material
- Rail buckling
- Increased strain on bridge materials
More Extreme-heat Events (very likely)

Capital Region
More extreme heat days (> 90°F)
• 14 to 23 days by 2020s (instead of 10!)
• 27 to 82 days by 2080s
More heat waves
• 2 to 4 by 2020s (instead of 1!)
• 4 to 9 by 2080s

Adapted from IPCC (2001)
Vulnerabilities to Extreme Heat Events

- Increased strain on A/C capacity
- Crop and livestock stress
- Increased energy demand/power failures
- Increased strain on runway material
- Rail buckling
- Increased strain on bridge materials
Warmer winters (very likely)

- Longer growing season
- Earlier blooming of perennials
- Not enough freeze days for certain crops
- Increased freeze or frost damage of woody perennials
- Potential changes in sap flow
- Increased winter survival of deer populations
- Increased survival of insect pests
- Earlier arrival of migratory birds
- Northward expansion of invasive weeds

Changes in ensemble averaged snow frequency relative to historical simulation (Unit: %). Ning et al., 2015.
Recreation and Tourism Effects

PREDICTED CHANGES IN WINTER SNOW COVER

1960-1990

2070-2100, SCENARIO I, LOW EMISSIONS

2070-2100, SCENARIO III, HIGH EMISSIONS

Winter days (DJF) with snow cover

81–90 72–81 63–72 54–63 45–54 <45

From: Climate Change in the Adirondacks, J. Jenkins
Fewer Extreme Cold Events (likely overall, but potential for extreme cold)

- Extreme Cold
 - Damage to property, public infrastructure
 - Crop damage
 - Demand for electricity (heating)
 - Fatalities

[Chart showing coldwave occurrences by year]

[Diagram explaining the science behind the polar vortex]

https://mitigateny.availabs.org/hazards/coldwave
Increased mean annual precipitation (more likely than not)

Region 1 (Rochester) – Precipitation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2020s</td>
<td>34.0 inches</td>
<td>0 percent</td>
<td>+ 2 to + 7 percent</td>
<td>+ 8 percent</td>
</tr>
<tr>
<td>2050s</td>
<td></td>
<td>+ 2 percent</td>
<td>+ 4 to + 10 percent</td>
<td>+ 12 percent</td>
</tr>
<tr>
<td>2080s</td>
<td></td>
<td>+ 1 percent</td>
<td>+ 4 to + 13 percent</td>
<td>+ 17 percent</td>
</tr>
<tr>
<td>2100</td>
<td></td>
<td>- 3 percent</td>
<td>+ 4 to + 19 percent</td>
<td>+ 24 percent</td>
</tr>
</tbody>
</table>

Region 4 (New York City) – Precipitation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2020s</td>
<td>49.7 inches</td>
<td>- 1 percent</td>
<td>+ 1 to + 8 percent</td>
<td>+ 10 percent</td>
</tr>
<tr>
<td>2050s</td>
<td></td>
<td>+ 1 percent</td>
<td>+ 4 to + 11 percent</td>
<td>+ 13 percent</td>
</tr>
<tr>
<td>2080s</td>
<td></td>
<td>+ 2 percent</td>
<td>+ 5 to + 13 percent</td>
<td>+ 19 percent</td>
</tr>
<tr>
<td>2100</td>
<td></td>
<td>- 6 percent</td>
<td>- 1 to + 19 percent</td>
<td>+ 25 percent</td>
</tr>
</tbody>
</table>

- Increased across state since 1900
- More variable
- Shift to winter
- Projections less certain than for temperature
Vulnerabilities to Increased Mean Annual Precipitation/Flooding

- Urbanized watersheds rapidly aggregate water and have a limited capacity to attenuate rainfall inputs flow/flooding in large basins
- Increased turbidity of water supply reservoirs
- Increased flooding of wastewater treatment plants
- Increased flooding resulting in inability to access agricultural fields during critical times
- Increased flooding risk could delay spring planting and harvest
- Increased soil compaction because of tractor use on wet soils
Extreme Precipitation/Flooding (more likely than not)

- Primary weather hazard in NYS
- “Where it rains, it can flood”
- Significant shift to extreme precipitation events, more to come
- 1996-2018 (not including hurricanes)
 - Avg. annual loss: $130 million
 - Avg. annual flooding episodes: 80
 - Avg. annual severe flooding episodes: 7
 - Total flooding fatalities: 84
Resources: Future Extreme Precipitation

http://precip.eas.cornell.edu/

http://ny-idf-projections.nrcc.cornell.edu/
Flood Risk in New York

Estimated Population in 100-Year Flood Zone by County

- **Est. Population**
 - 110,000 - 140,000
 - 71,000 - 100,000
 - 41,000 - 70,000
 - 4,300 - 40,000
 - 0 - 4,200

Note: Counties w/ no NFIRM or Q3 avail.

Source: FEMA, US Census Bureau
Flood Risk in New York

New York Flood Property Damage by County 1960-2012

NYS Insured Losses

<table>
<thead>
<tr>
<th>Decade</th>
<th>Losses (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950s</td>
<td>$44</td>
</tr>
<tr>
<td>1960s</td>
<td>$37</td>
</tr>
<tr>
<td>1970s</td>
<td>$866</td>
</tr>
<tr>
<td>1980s</td>
<td>$152</td>
</tr>
<tr>
<td>1990s</td>
<td>$757</td>
</tr>
<tr>
<td>2000s</td>
<td>$762</td>
</tr>
<tr>
<td>2010s</td>
<td>$11,547</td>
</tr>
</tbody>
</table>

NYSHMP 2014
Source: SHLEDS1
Increasing Flood Damage Nationally

- National flood damage costs are increasing
 - Function of changing precipitation, floodplain development, real estate values
 - Ca. 33% losses in X zone
 - Riverine SFHAs 45% broader and deeper by 2100, 55% for coastal SFHAs
- NFIP premiums 10 to 70% higher
Vulnerabilities to Extreme Precipitation/Flooding

- Increased runoff and reduced infiltration of rain into natural ground cover and soils
- Stress on crops, especially if extreme events occur in clusters
- Low lying areas susceptible to more frequent flooding
- Increased scour potential for bridge foundations
- Damage to road and rail embankments
- Spread of contamination
- Mudslides and landslides
Community Risk and Resiliency Act Guidance Documents

- Using Natural Measures to Reduce the Risk of Flooding and Erosion
- New York State Flood Risk Management Guidance
- Guidance for Smart Growth Public Infrastructure Assessment
- Estimating Guideline Elevations

https://www.dec.ny.gov/energy/102559.html
Coastal Storms (uncertain)

- Tropical cyclones:
 - Hurricanes, tropical storms
 - July – October
 - Storm surge, high winds, heavy rain

- Nor’easters
 - September – April
 - High winds, wave action, several tide cycles
More Frequent Drought (uncertain)

- Summer droughts likely more frequent
- Trend in multi-year droughts
- Exacerbated by high temperatures
- Long-range projections not available

http://nedews.nrcc.cornell.edu/
Vulnerabilities to Drought

- Changes in groundwater depths
- Dry streams or wells
- Seasonal variation in reservoir inflow and aquifer recharge
- Reduced supply in shallow wells, wells in moderately productive aquifers and small reservoirs
- Greater competition for water between potable, commercial uses, and ecological needs
- Decrease in availability for equipment cooling industrial and power-generation equipment
- Increased crop root disease and anoxia

- Increased stress on agricultural and native plants
- Inadequate irrigation capacity for some high value crop growers
- Lower water level of lakes and canals due to higher rates of evaporation
Tornadoes/thunderstorms (uncertain)

- 1996-2018 (not including hurricanes)
 - Avg. annual tornado loss: $3.4 million
 - Avg. annual tornadoes: 7
 - Avg. annual wind damage: $13.5 million
- No strong trends in frequency or severity
- Future trends uncertain
Interacting Hazards and Cascading Effects

Kingston, NY

Breezy Point, NY
Thank You

Mark Lowery
Assistant Director
Office of Climate Change
New York State Department of Environmental Conservation
625 Broadway
Albany NY 12233-1030
Mark.Lowery@dec.ny.gov

Connect with us:

• DEC: www.dec.ny.gov

• Community Risk and Resiliency Act: www.dec.ny.gov/energy/102559.html

• Climate Smart Communities: www.dec.ny.gov/energy/76483.html

• Facebook: www.facebook.com/NYSDEC

• Twitter: twitter.com/NYSDEC

• Flickr: www.flickr.com/photos/nysdec